В издательстве МИФ вышла книга «Симпсоны и их математические секреты» британского популяризатора науки Саймона Сингха. Как Гомеру удалось превратить пончик в сферу и узнать о бозоне Хиггса раньше ученых CERNa? Публикуем главу, посвященную его изобретениям и научным открытиям, а также тем, кто за ними стоит.
Время от времени Гомер Симпсон пытается демонстрировать свои изобретательские таланты. Например, в эпизоде «Мардж и тюрьма» (Pokey Mom, сезон 12, эпизод 10; 2001 год) он создает чудесный исправляющий спиноцилиндр доктора Гомера, который представляет собой побитый мусорный бак с вмятинами, «точно повторяющий контуры человеческого тела». Гомер позиционирует свое изобретение как метод лечения боли в спине, хотя никаких данных, подтверждающих его слова, нет. Хиропрактики Спрингфилда приходят в ярость из-за того, что Гомер переманивает их пациентов, и угрожают уничтожить его изобретение. Это позволит им снова монополизировать рынок лечения проблем с позвоночником и благополучно продвигать собственные фальшивые методы лечения.
Изобретательские подвиги Гомера достигают пика в эпизоде «Волшебник вечнозеленой аллеи» (The Wizard of Evergreen Terrace, сезон 10, эпизод 2; 1998 год). Название эпизода — это отсылка к прозвищу Томаса Эдисона «Волшебник из Менло-Парка», которое ему дал один журналист после того, как тот открыл в Менло-Парке свою главную лабораторию. К моменту смерти в 1931 году Эдисон запатентовал на свое имя 1093 изобретения и стал легендой. В эпизоде «Волшебник вечнозеленой аллеи» рассказывается о решимости Гомера идти по стопам Эдисона. Он сооружает различные устройства, от сигнализации, срабатывающей каждые три секунды, до ружья, которое делает макияж, выстреливая прямо в лицо. Именно в этот научно-исследовательский период мы видим, как Гомер, стоя у доски записывает несколько математических уравнений. В этом нет ничего удивительного, потому что многие непрофессиональные изобретатели увлекались математикой, а многие математики любили изобретать.
Фрагменты математических каракулей Гомера на доске в эпизоде «Волшебник вечнозеленой аллеи» включил в сценарий Дэвид Коэн, который представлял новое поколение авторов сериала с математическими наклонностями и присоединился к команде «Симпсонов» в середине 1990-х. Так же как Эл Джин и Майк Рейсс, Коэн еще в раннем возрасте демонстрировал настоящий талант к математике. Дома он постоянно читал отцовский журнал Scientific American и разгадывал математические головоломки, которые печатались в ежемесячной колонке Мартина Гарднера. Кроме того, в средней школе Дуайта Морроу в городе Энглвуд Коэн был одним из капитанов команды математиков, выигравшей в 1984 году математический конкурс штата. Но Коэн, помимо математики, хотел включить в эпизод научные уравнения, поэтому связался со своим школьным другом Дэвидом Шиминовичем, который не бросил академическую стезю и стал астрономом Колумбийского университета.
Первое уравнение на доске — в значительной степени работа Шиминовича, и оно позволяет составить прогноз массы M (H0) бозона Хиггса, элементарной частицы, гипотеза о существовании которой впервые была выдвинута в 1964 году. Уравнение представляет собой забавное сочетание различных фундаментальных параметров, а именно постоянной Планка, гравитационной постоянной и скорости света. Если вы найдете их в справочниках и подставите в уравнение*, то масса бозона Хиггса будет равна 775 гигаэлектронвольт (Гэв), что гораздо больше значения 125 Гэв, полученного в 2012 году, когда бозон Хиггса был открыт. Тем не менее значение 775 Гэв являлось неплохой догадкой, особенно если учесть, что Гомер — непрофессиональный изобретатель и делал свои расчеты за четырнадцать лет до того, как специалистам европейского центра ядерных исследований (CERN) удалось отследить эту неуловимую частицу.
Второе уравнение… придется на какое-то время отложить. Это самая интригующая с математической точки зрения строка, поэтому стоит немного подождать, чтобы проанализировать ее более тщательно. Третье уравнение касается плотности Вселенной, которая определяют ее судьбу. Если Ω (t0) будет больше 1, как сначала написал Гомер, то вселенная в конце концов взорвется под собственным весом. Для того чтобы продемонстрировать это космическое событие на местном уровне, в подвале Гомера — вскоре после того как зрители видят это уравнение — происходит небольшой взрыв.
Затем Гомер меняет знак неравенства, превращая уравнение Ω (t0) > 1 в Ω (t0) < 1. С космологической точки зрения новое уравнение подразумевает, что Вселенная будет расширяться вечно, порождая нечто сродни бесконечного космического взрыва. Сюжет отображает и это явление, и как только Гомер меняет знак неравенства, в подвале происходит мощный взрыв. Четвертая строка на доске представляет собой последовательность четырех математических рисунков, показывающих, как пончик превращается в сферу. Эта строка относится к области математики под названием «топология». Для того чтобы понять суть рисунков, необходимо знать, что согласно правилам топологии квадрат и круг идентичны. Их считают гомеоморфными, или топологическими близнецами, поскольку квадрат, нарисованный на резиновом листе, можно растянуть и превратить в круг. На самом деле топологию иногда называют «геометрией на резиновом листе».
Топологов не интересуют углы и расстояния: очевидно, что в процессе растягивания резинового листа они меняются. Но их волнуют более фундаментальные свойства. Например, фундаментальное свойство буквы А — что она, по сути, представляет собой петлю с двумя ножками. Буква R — тоже петля с двумя ножками. Следовательно, буквы A и R гомеоморфны, так как букву A, нарисованную на резиновом листе, можно преобразовать в букву R посредством соответствующего растягивания. Однако никакое растягивание не поможет превратить букву A в букву H ввиду того, что эти буквы принципиально отличаются друг от друга: A состоит из одной петли и двух ножек, а H вообще не имеет петель. Единственный способ превратить букву A в H — разрезать резиновый лист у верхушки A, что разомкнет петлю. Однако в топологии разрезание запрещено. Принципы геометрии на резиновом листе можно расширить на три измерения, что объясняет острОту, будто тополог — это тот, кто не видит разницы между пончиком и кофейной чашкой. Другими словами, у кофейной чашки одно отверстие, образованное ручкой, и у пончика одно отверстие, прямо посередине. Следовательно, кофейную чашку, сделанную из эластичной глины, можно растянуть и скрутить в форме пончика. Это и делает их гомеоморфными.
Напротив, пончик невозможно превратить в сферу, поскольку в ней нет отверстий, и никакое растягивание, сжатие и скручивание не помогут удалить дыру, которая является неотъемлемой частью пончика. В действительности тот факт, что пончик отличается от сферы в топологическом смысле, — доказанная математическая теорема. Тем не менее каракули Гомера на доске говорят о том, что ему будто бы удалось совершить невозможное, так как рисунки отображают успешную трансформацию пончика в сферу. Но как? Хотя в топологии разрезание запрещено, Гомер решил, что откусывание вполне приемлемо. В конце концов, исходный объект — пончик, так кто же удержится от соблазна немного от него откусить? Если откусить от пончика несколько кусочков, он будет похож на банан, который можно превратить в сферу посредством стандартного растягивания, сжатия и скручивания. По всей вероятности, профессиональные топологи пришли бы в ужас от того, что их любимая теорема превратилась в пепел, но согласно личным правилам топологии Гомера, пончик и сфера идентичны. Возможно, корректнее было бы назвать их не гомеоморфными, а гомероморфными.
Вторая строка на доске Гомера, пожалуй, самая интересная, поскольку она содержит такое равенство:
На первый взгляд уравнение выглядит безобидным, если только вы не знаете кое-что из истории математики, — иначе вы с отвращением разобьете в щепки свою логарифмическую линейку. Похоже, Гомеру удалось совершить невозможное — найти решение знаменитой загадки последней теоремы Ферма! В эпизоде «Волшебник вечнозеленой аллеи» Гомер как будто бросает вызов величайшим умам четырех столетий, которые сходились во мнении, что данное уравнение не имеет решений. Вы можете проверить это уравнение сами с помощью калькулятора. Возведите число 3987 в двенадцатую степень. Прибавьте 4365 в двенадцатой степени. Возьмите корень двенадцатой степени из результата — и получите число 4472. Во всяком случае именно такое число выдаст калькулятор, экран которого рассчитан только на десять разрядов. Однако если у вас есть более точный калькулятор, отображающий двенадцать или более цифр, то вы увидите иной ответ. Фактическое значение третьего члена уравнения ближе к следующему значению:
Так что же происходит? Уравнение Гомера — это так называемое самое близкое решение уравнения Ферма. То есть числа 3987, 4365 и 4472 очень близки к тому, чтобы удовлетворять уравнению Ферма, причем настолько близки, что погрешность практически незаметна. Тем не менее в математике решение либо есть, либо его нет. Самое близкое решение — это, по большому счету, вообще не решение, а значит, последняя теорема Ферма так и остается неопровергнутой. Дэвид Коэн включил эту математическую шутку в сценарий в расчете на тех зрителей, которые оказались достаточно внимательными, чтобы заметить уравнение, и достаточно осведомленными, чтобы понять связь с теоремой Ферма. Доказательство Уайлса было опубликовано за три года до выхода этого эпизода в эфир в 1998 году, так что Коэн прекрасно знал, что теорему Ферма удалось одолеть. В каком-то смысле он даже имел к этому отношение, поскольку во время учебы в Калифорнийском университете в Беркли посещал лекции Кена Рибета, а именно Рибет предоставил Уайлсу важнейший инструмент для доказательства теоремы Ферма.
Как только эпизод вышел в эфир, Коэн начал просматривать интернет-форумы в поисках информации о том, заметил ли кто-нибудь его шутку. И со временем нашел сообщение, в котором было сказано: «Я знаю, что это, по всей видимости, опровергает теорему Ферма, но я проверил эти цифры на калькуляторе, и они оказались правильными. Что, черт возьми, здесь происходит?» Коэн был рад, что начинающих математиков во всем мире заинтриговал этот математический парадокс: «Я был просто счастлив, поскольку стремился получить решение, достаточно точное, чтобы калькуляторы сказали людям, что это уравнение работает». Дэвид Коэн очень гордится своей доской в эпизоде «Волшебник вечнозеленой аллеи». В действительности все интересные фрагменты, которые он включил в «Симпсонов» за эти годы, доставляют ему огромное удовлетворение: «Я получаю от этого настоящее удовольствие. Работая на телевидении, вполне можно не испытывать гордости за то, что вы делаете, потому что это способствует моральному разложению общества. Поэтому когда мы получаем возможность повысить уровень дискуссии (в частности, прославить математику), это компенсирует те дни, когда я пишу примитивные шутки».
Обувь от адидас — это выбор тех, кто ценит стиль, комфорт и универсальность. Модели из…
Український бізнесовий ландшафт охоплює великий спектр підприємств, які поділяються на малі, середні та великі залежно…
Не секрет, что ежегодно водители должны обновлять свою автостраховку и покупать новый полис, защищающий их…
Кредит готівкою — один з банківських продуктів, який має високий попит серед населення. Він передбачає…
Мир трейдинга часто представляется новичкам как захватывающее приключение с возможностью быстрого обогащения. Однако реальность может…
Відповідно до п. 6 Порядку заповнення податкової накладної, затвердженого наказом Міністерства фінансів України від 31.12.2015 №…